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Abstract—Two models are developed to describe the effective thermal conductivity of randomly packed

granular systems based on a one dimensional Ohm’s Law method. These models are shown to represent

upper and lower bounds on the effective conductivity of all normally distributed stochastic mixtures. An

empirical factor has been obtained to account for three dimensional thermal effects. Comparisons to

experimental data indicate that the modified correlation is generaily accurate to within +207%, over a
wide range of constituent materials.

NOMENCLATURE
A, area of heat transfer;
ke, thermal conductivity of continuous phase;
kq, thermal conductivity of discontinuous phase;
k..,  effective thermal conductivity assuming

uniform heat flux;

k. ., effective thermal conductivity assuming
parallel isotherms;

R, thermal resistance;

t, time;

g, solid fraction of granular material;

i, mode of solid fraction distribution;

o, standard deviation of solid fraction
distribution.

1. INFRODUCTION

THE PROBLEM of determining the effective thermal
conductivity of randomly packed granular materials is
one which frequently occurs in engineering practice.
As a consequence there has been a considerable effort
in the past to develop suitable analytical models. In
general these models have proved satisfactory provided
that the constituent conductivities are of similar mag-
nitude. For heterogeneous systems which do not fulfil
this condition it has been found that available ana-
lytical models produce considerable error [1].

The difficulty in developing an adequate model does
not arise from any ignorance of the fundamental laws,
rather the problem arises in complications in their
application. A detailed solution of the conduction
problem would require a knowledge of the shape, size,
location and conductivity of each particle in the system
together with the interaction between particles. Such
knowledge is difficult to represent for randomly packed
systems. To overcome these difficulties, investigators
have tended to make a series of simplifying assump-
tions. The two basic approaches may generally be
classified as follows:

1. Fourier’s Law models—These models utilize an
idealized geometry for which the temperature field may
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be solved. Knowing the temperature field the effective
thermal conductivity may be solved using the Fourier—
Biot Law. The idealized geometry will differ signifi-
cantly from the geometry of randomly packed struc-
tures. The formulations so developed are extrapolated
to randomly packed systems and differ primarily in the
extrapolation technique.

2. Ohm’s' Law models—Simplified repetitive ge-
ometries are assumed to be representative of the
randomly packed system. The problem is further
simplified by assuming one dimensional heat transfer.
An equivalent electrical network is then developed and
the thermal conductivity of the system is obtained from
the thermal-electrical analogy.

2. OHM’S LAW MODELS

The Fourier’s Law models received considerable
attention during the early period of model develop-
ment for heterogeneous systems. More recently atten-
tion has centered more toward the Ohm’s Law models.
Actually there exist only a very limited number of
configurations for which closed form solutions exist
for the Fourier equation. Once these solutions were
exhausted researchers were forced toward development
of the Ohm’s Law models in hopes of developing a
more general solution.

A simple Ohm’s Law model is shown in Fig. 1(a).
Here a heterogeneous material with solid volume
fraction &, is represented as a series of idealized cubic
particles arranged in a square array. The uniform
spacing between particles is maintained such that the
idealized system retains the proper volume fractions.
A typical unit cell is shown in the figure. It is assumed
that the effective thermal conductivity may be deter-
mined by considering the equivalent electrical resist-
ances in parallel and in series and by applying Ohm’s
Law. In taking such an approach it is necessary to
assume one dimensional heat transfer. Two options
occur here: It may be assumed that the heat flux is
uniform in the direction of heat transfer or that the
isotherms are straight and parallel. These two assump-
tions lead respectively to the equivalent electrical
networks shown in Figs. 1(b) and (c).

It should be noted that the two networks result in dif-
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F1G. 1. Cubic lattice representation of granular material.

ferent effective conductivities. Both are approximations

to the exact solution and differ because of the simplify-

ing assumptions. It is important to note that both solu-
tions form bounds to the real solution to the proposed
model. This is more clearly secen when one considers

a nodal point representation of the temperature field

in the proposed system. If the resistances normal to

the direction of heat flow are assumed to be very large,
the heat flow will remain uniform in the direction of
the overall temperature gradient. Conversely, if the
lateral resistances are taken as zero the potential will
be equal in each lateral plane. Therefore, the assump-
tion of linear and parallel heat flux lines is equivalent
to the assumption of infinite lateral resistances; the
assumption of parallel isotherms is equivalent to that
of zero lateral resistance. The actual resistance will, of
course, fall somewhere between zero and infinity so
that these two cases form the bounding conditions.

Whether the two solutions represent the bounding

conditions for the physical system depends upon the

suitability of the proposed model. It can therefore be
stated that the limitations placed on available Ohm’s

Law models may be attributed to two principle causes:

1. Unrealistic Geometrical Assumptions —Most com-
mon Ohm’s Law models utilize highly idealized
particle shapes (usually parallelopipeds) and un-
realistic particle arrays (usually cubic). Both assump-
tions deviate significantly from the physical situation
found in randomly packed granular materials fre-
quently found in nature.

2. Unrealistic Heat Flow Assumptions—The assump-
tion of one dimensional heat flow, which is almost
universally to be found in Ohm’s Law models, is
not justified for systems with constituents of widely
differing thermal conductivities.

Any model development which might serve to elim-
inate or reduce differences between the analytical model
and actual granular systems should also serve to extend
the range of applicability of the proposed correlation.

3. THEORETICAL DEVELOPMENT

Recognizing the two principal causes of failure for
existing correlations, it has been decided to approach

them systematically. solving first the geometrical
relationships. In this case fully stochastic arrangements
will be used.

A. Uniform heat flux

Consider a typical unit cell of the heterogeneous
system shown in Fig. 2(a). Divide the unit cell into
uniform sized channels by passing both vertical and
horizontal planes through the element. These planes
are to be oriented parallel to the direction of heat flux
and are to be equi-spaced. If the channels are suf-
ficiently small compared to the dimensions of the solid
particles, they will appear as consisting of sections of
the continuous and discontinuous phases placed in
series. Assuming 4 uniform heat flux in each channel,
the order of the series resistances does not influence
the overall resistance. Consequently, the two com-
ponents may be separated as shown in Fig. 2(b). The
resistance of the channel is then given by

L (1—¢)

R,‘ = e e ——, 1
AA Tk AA M

(¢) (d)

F16G. 2. Equivalent geometries for uniform heat flux.

The channels behave as resistances in parallel. The
overall resistance is then given as:

1 1 | !
s U IR (2)

The order of these channels and their shape may be
altered so long as the individual channel resistances
remain unchanged. They may then be distorted to a
unit width by changing the vertical dimension while
retaining the unit length. They are then arranged in
order of decreasing solid fraction. This geometry is
shown in Fig. 2(c). The effective thermal conductivity
for the specified element is

ko kg AA;

e ()

keu = |
S ket kg (1—2¢)

If the area of the channels is allowed to approach zero
as the number of channels approaches infinity the
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summation in equation (3) may be replaced by an
integral

o [ kkada u
“= | koot ka(1—2) )

1 1 kckd
ke, = S dxdy 5
L L Kt oleo—ig Y ®

1 kokg

= —d 6
L kat etk —ka) ©

since the integrand is constant in the horizontal direc-
tion. The corresponding geometry is shown in Fig. 2(d).

B. Parallel isotherms

Consider a unit cube of the heterogeneous system
shown in Fig. 3(a). The system is to be divided into
a series of fine lamina oriented normal to the direction
of heat flow as shown. These elements are chosen to
be sufficiently thin that the cross sectional area of the
solid particles are essentially constant throughout its
width. Assuming parallel isotherms within the unit
cube, the discontinuous (solid) and continuous phases
will act as resistances in parallel within each lamina.

\\\
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F1G. 3. Equivalent geometries for linear isotherms.

The order of the parallel resistances may be changed
arbitrarily without affecting the overall resistance of the
parallel circuit. Thus the resistances of the solid
elements may be grouped together in each lamina as
shown in Fig. 3(b). A simple calculation then shows
that the equivalent resistance is given by the equation:

! 7
i A (7
m=1 ke + (ka—k)em

Where the solid fraction in the mth lamina is given by
&n and the width of each lamina is Ax.

Note the laminae act as resistances in series. Again
the order of the resistances does not affect the overall
thermal resistance so that the elements may be re-
arranged in order of decreasing solid fraction as shown
in Fig. 3. If the width of the laminae is allowed to
approach zero then the effective thermal conductivity
for Fig. 3(d) becomes:

ke, =

1

~—j R ®)
0 kc + (kd _kc)s

ke, =

C. Evaluation of the solid fraction, ¢

Both equations for zero and infinite lateral conduc-
tivity, (6) and (8), require a knowledge of the functional
relation between the solid area fraction and position
to solve the integral. The technique for obtaining such
a relation was developed by Tsao [2]. Consider the
arbitrary material distribution shown in Fig. 2(c). The
vertical position of each lamina is determined by its
solid fraction. The portion of the elements below a
particular element is then equal to the portion of
elements having larger solid fractions.

x = Pg; > ¢) 9)
1
=j f(d)de. (10)
Differentiating this equation,
dx = — f(e)de (11)

This relationship may be substituted into equations (6)
and (8) for the thermal conductivity with uniform heat
flux and parallel isotherms. The limits of integration
must be changed accordingly.

° kckdf(g)
kk’u = T g de
1 Ka+etk.—ky)

1 G
—=| 12 g4
ke, )i ketolkg—k)

Equations (12) and (13) are entirely general in that
no assumptions have yet been made regarding the
particle shape or size distribution. The effects of these
parameters on the solid area fraction were studied by
Debbas and Rumph [3] and Haughey and Beveridge
[4]. These sources found experimentally that the dis-
tribution of the solid area fraction is Gaussian for
most packings. A notable exception occurs after pro-
longed vibration of a sample. This packing produces
large regions of ordered distribution and strong aniso-
tropic effects. Similarly large particle size variations
tend to allow sifting of smaller particles into the lower
regions of a given sample. This produces a definite
bulk porosity gradient in the vertical direction. In such
cases the radial distribution remains normal. Neglect-
ing all such non-normal distributions the frequency
distribution may be taken as Gaussian

,Tll

) =——.
J e ¥ dr

The integral in the denominator serves to normalize
the truncated Gaussian distribution. By replacing the
standardized random variable equation (14) may be
written in the form:

(12)

(13)

(14)

E-H
+e ( g )

a\/n erf{ 12 | 0— '

o))
The mode of the distribution, g4, and the standard

deviation of the solid area fraction, o, remain to be

evaluated. The mode may be defined implicitly in terms
of the standard deviation from the basic geometry of

(15)
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the mixture. The total solid volume is equal to the sum
of the elemental solid volumes.
-

edx.
0

{16)

Using the results of equation (11) this expression may
be written:
‘0

—&f(e)dx.

&=

(17

1

Determination of an exact expression for the stan-
dard deviation is difficult. Strange [5] reports that the
standard deviation is given by the relation,

constant

, (18)
JM

where M is a measure of the sample size.

For the correlation to be meaningful there must exist
a minimum size sample such that for all larger samples
the effective thermal conductivity is constant. This is in
fact the case as shown in Fig. 4. Here ¢ is varied in
the equations for the effective thermal conductivity

g

T T i T T

Air And Stee! Spheres [6]
k =0. 608
02N k™ - 0234 keal/m- hr.c .

ke= 38,5 kcal/m- hr ¢
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FiG. 4. Effect of standard deviation in area fraction upon
effective conductivity.

using uniform heat flux and parallel isotherms respect-
ively. It may also be noted that the calculational
results bracket the range of experimental data. This is,
of course, the expected trend since the assumption of
uniform heat flux and parallel isotherms correspond
to those of zero and infinite lateral conductivity
respectively.

4. DEVELOPMENT OF AN EFFECTIVE
CONDUCTIVITY CORRELATION

Equations (7) and (8) have been obtained to predict
the effective thermal conductivity of two phase mixtures
as a function of the constituent conductivities and the
volume fractions. The distribution of the two phases
is found by taking ¢ as any sufficiently large number,
¢ > 100, and solving equations (15) and (17) implicitly
for the corresponding value of . The resulting thermal
conductivity expressions are considered to be geometri-
cally realistic for most random packings of spherical
or semispherical particles but are based alternately on
the assumptions of zero or infinite lateral conductivity.

Since the lateral conductivity of the mixture will fall
between these limits the two equations form a set of
bounding limits for the physical case. Numerous
authors have proposed correlations which effectively
imply that one of these two assumptions is sufficiently
close to the physical system that it may be used in
obtaining an effective conductivity expression. In spite
ofarguments presented by proponents of both methods,
it does not appear possible to select. a priori, a corre-
lation which is more consistent with the physical
system. The preferred method would then be to com-
pare both correlations to experimental results and to
make a selection based on the demonstrated results.
Such a comparison has been made and the results
are shown graphically in Figs. 5-7. These hgures

represent randomly packed granular systems with
porosities of 0.31, 043 and 0.58 respectively. The
1000
100 [~

Parallel 1sotherms
10}~

Experimental Data ————\

Ke , Effective Thermal Conductivity
Kc Conductivity Of Continuous Phase

Uniform Heat Flux
1 1
1 10 100

K¢, Conductivity Of Continuous Phase
K Conductivity Of Discontinuous Phase

F1G. 5. Comparison of bounding conductivities with experi-
mental data for a porosity of 0.31.

selected values represent a range of packing fractions
so that they may be considered as representative of all
random packings. The non-dimensionalized effective
conductivity is given as a function of the constituent
conductivity ratios, k./ky. The experimental values are
taken from data listed in Table 1. As shown in the
figures virtually all data falls between the two limiting
curves. For a constituent conductivity ratio, ky/k. < 10
either bounding equation gives reasonably accurate
results. For k,/k, > 100 both correlations deviate sig-
nificantly from the experimental data. This indicates
the reason why previous Ohm’s Law models have
generally not been successful at higher constituent con-
ductivity ratios. No doubt some of the discrepancy
has been countered by frequently assuming a somewhat
distorted array. Uniform heat flux models have been
developed such that an inordinate amount of the higher
conductivity material is arranged in series with itself.
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Table 1. Comparison of bounding conductivities to experimental conductivities
Conductivity, (kcal/m h K) x 100
Case Fluid Solid Uniform Parallel
phase phase Experiment heat flux isotherms (ka/k,) 1-¢ Ref.
1 Air Calcite 214 12.1 64.8 128.6 0.493 [6]
241 310
2 Air Steel 224 16.1 261.1 684.6 0.489 7]
241 1650
3 Helium Steel 75.5 60.5 341.2 138.1 0.489 "
11.95 1650
4 Glycerin Steel 246.0 170.6 456.4 36.3 0.489 (71
454 1650
5 Water Steel 272.0 187.4 4719 320 0.489 [7]
51.6 1650
6 CO, Basalt 1.015 0.0047 2.26 134.2 0.470 [8]
0.080 k0.8
7 EtOH Calcite 63.6 499 101.0 19.7 0.465 9
15.7 310
8 Air Calcite 25.0 11.9 65.7 128.6 0.458 [e]
2.41 310
9 Air Calcite 17.5 10.6 65.7 145.5 0.454 [9]
2.13 310
10  EtOH Calcite 63.5 48.7 10.3 19.7 0.454 9
15.7 310
11 Water Calcite 1270 103.8 154.3 6.1 0.453 [10]
50.5 310
12 Air Calcite 19.0 10.7 64.7 146.2 0.451 [10]
2.12 310
13 Air Calcite 172 10.6 65.6 1455 0.451 [10]}
2.13 310
14 Air Lead 304 16.1 455.0 1260.7 0.450 [6]
234 2950
15 Water Calcite 1180 104.4 154.3 6.1 0.447 [10]}
50.8 310
16 Air Quartz 36.5 14.0 170.1 398.7 0.440 ]
238 950
17 Air Lead 239 154 4757 1260.7 0.439 (6]
2.34 2950
18 Water Silica 216.0 1543 356.0 179 0.439 [7]
54.5 9739
19 Air Quartz 26.8 127 176.3 420.0 0.438 [
225 945
20 Air Coal 11.8 6.2 136 16.0 0.437 [11]
225 36
21 Hydrogen Coal 253 218 277 22 0437 [11]
16.6 36
22 Air Silica 21.89 130 181.7 4219353 0.437 (7]
2.308 973.9
23 Air Steel 34.1 15.8 604.7 1645.2996 0435 (6]
234 3850
24 EtOH Silica 144.7 98.4 302.0 33.198 0434 (71
29.34 9739
25 Air Lead 344 154 475.7 1260.6841 0433 (6]
2.34 2950
26 Water Silica 244.9 154.3 356.1 17.8689 0431 (71
54.5 973.9
27 IC8 Glass 35.14 26.5 44.6 7.6485 0431 [7]
12.29 93.96
28 Ol Lead 81.5 73.1 5333 156.4935 0.430 [10]
15.4 2410
29 Water Silica 2249 154.3 356.1 17.8689 0.430 [7]
54.5 973.9
30 Water Silica 2174 1543 356.1 17.8689 0.430 N
54.5 9739
31 Water Silica 2189 154.3 356.1 17.8689 0.430 7]
54.5 9739
32 Water Silica 2189 154.3 356.1 17.8689 0.430 [7]
54.5 973.9
33 H, SiC 91.0 65.0 371.3 104.3771 0.429 [12]
14.85 1550
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Table | Continued

Conductivity. (kcal'm h K) x 100

Case Fluid Solid Uniform Parallel

phase phase Experiment heat flux isotherms (kyik o) 1—& Ref.

34 Air SiC 20.0 128 266.2 745.1921 0.429 [12]
2.08 1550

35 CO; Sic 15.6 83 250.6 1230.1594 0.429 [12]
1.26 1550

36 IC8 Silica 94.4 50.6 2470 79.2727 0.428 (7]
12.29 973.9

37 1C8 Silica 94.0 50.7 2470 79.2727 0428 [7}
1229 9739

38 Glycerin Glass 73.3 29.1 73.3 2.0289 0.428 [7]
46.3 94

39 Water Silica 207.0 156.7 350.5 17.8689 0.426 [7]
54.5 973.9

40  Water Silica 2129 153.4 358.0 17.8689 0.426 [7]
54.5 973.9

41 Air Silica 23 13.0 182.6 4219353 0.426 [71
231 9739

42 1C8 Silica 70.9 50.4 248.4 79.2727 0.426 (7]
12.29 973.9

43 Air Glass 18.5 8.1 279 40.7097 0.426 [7]
2.31 94.0

44 Helium SiC 61.5 54.4 3575 129.7071 0425 (8]
11.95 1550

45 Hydrogen SiC 85.0 64.7 3733 104.3771 0425 [12]
14.85 1550

46 Air Sic 22.6 12.7 267.7 745.1921 0.425 [12]
2.08 1550

47  CO, SiC 14.7 8.2 252.0 1230.1594 0425 [12]
1.26 1550

48  Air Silica 226 13.0 182.6 421.9353 0.424 (71
231 9739

49  CO, SiO 16.3 7.1 125.0 583.3333 0.424 (7]
1.2 700

50 Air SiO0 238 12.8 139.5 290.4563 0.424 (73
241 700

51 Air SiOo 234 12.8 139.5 290.4563 0.424 [7]
241 700

52 Air Sio 25.2 12.8 139.5 290.4563 0.424 [7]
241 700

53 Glycerin Silica 205.5 136.6 3422 21.0289 0424 [7]
26.3 9739

54 Air Steel 446 15.7 608.0 1645.2996 0423 [6]
2.34 3850

55  EtOH Silica 163.8 979 303.6 33.1980 0.423 (7]
293 973.9

56  EtOH Glass 55.4 45.3 61.7 3.2030 0423 [7]
29.3 94.0

57 Air Lead 36.0 153 478.3 1260.6841 0.420 [6]
2.34 2950

58  Air Glass 17.1 8.4 28.1 38.7967 0.420 (7]
2.41 93.5

59  Helium Glass 342 259 44.3 7.8243 0.420 [7]
11.95 93.5

60 Helium Gilass 356 259 44.3 7.8243 0.420 (7]
11.95 93.5

61 EtOH Glass 533 455 61.8 3.1588 0.420 [7]
29.6 93.5

62  EtOH Glass 550 45.5 61.8 31588 0.420 [7]
29.6 93.5

63 Glycerol Glass 71.4 58.1 738 2.0595 0.420 (7]
454 93.5

64 Water Glass 71.6 62.3 78.1 1.8120 0428 [7]
51.6 93.5

65  Water Glass 714 62.3 78.1 1.8120 0.420 [7]
51.6 93.5

66 Water Lead 358.0 196.1 816.9 58.7084 0.420 [10]

511
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Table 1 - Continued
Conductivity, (kcal/m h K) x 100
Case Fluid Solid Uniform Parallel
phase phase Experiment heat flux isotherms (kafk:) 1 ¢ Ref.

67 1C8 Silica 70.7 50.4 248.4 79.2727 0.420 [7]
12.3 973.9

68 1C8 Silica 713 50.4 248.4 79.2727 0.419 [7]
12.3 9739

69 EtOH Silica 1444 979 303.6 33.198 0.418 (7]
29.3 9739

70 Air Steel 37.8 157 608.0 1645.2996 0.417 [6]
2.34 3850

71 Air Lead 425 16.1 4814 1189.5161 0.417 [13]
2.48 2950

72 Air Quartz 29.7 12.7 177.3 420.0 0.416 [11]
2.25 945

73 Air Lead 364 15.3 478.3 1260.6841 0.416 [6]
2.34 2950

74 Air Glass 17.1 8.1 279 40.7097 0414 (71
2.308 94.0

75 Water Silica 230.8 1534 358.0 17.8689 0.414 (7]
54.5 9739

76 Air Steel 35.1 15.7 608.0 1645.2996 0.413 [6]
2.34 3850

77 Hydrogen SiC 100.7 64.7 3733 104.3771 0410 [12]}
14.85 1550

78 Air SiC 224 12.7 267.7 745.1921 0.410 [12]
2.08 1550

79 CO, SiC 17.8 82.1 252.0 1230.1594 0.410 [12]
1.26 1550

80 Air Sand 20.7 11.3 499 65.6250 0.410 [14]
2.86 187.5

81 EtOH Silica 154.9 979 303.6 33.1980 0.410 7]
29.3 9739

82 Water Glass 73.1 64.3 80.2 1.7240 0.408 [7]
54.5 94

83 Air Silica 24.6 13.0 182.6 421.9353 0.408 [7
231 973.9

84 Air Steel 51.7 15.7 608.0 1645.2996 0.406 [6]
2.34 3850

85 Air Lead 323 14.1 481.1 1401.8694 0.406 [10]
2.14 3000

86 Air Copper 78.6 18.4 4700.0 13313.2539 0.403 [9]
2.48 32950

87 Air Steel 36.8 15.7 608.0 1645.2996 0.402 [e]
2.34 3850

88 Air Steel 475 15.7 608.0 1645.3 0.401 6]
2.34 3850

89 Air Lead 325 14.1 481.1 14019 0.401 [1o]
2.14 3000

90 Air Lead 37.0 14.8 4879 1346.7 0.400 [11]
2.25 3030

91 Hydrogen Lead 120.6 80.8 655.2 182.5 0.400 [11]
16.6 3030

92 Water Lead 298.0 206.5 835.3 55.6 0.400 [11]
54.5 3030

93 Glycerin Lead 176.0 110.1 704.9 124.2 0.400 [
244 3030

94 Hydrogen Glass 39.6 26.7 45.1 742 0.400 [13]
12.6 93.5

95 Air Glass 15.5 8.6 28.3 377 0.400 [13]
2.48 93.5

96 Air Steel 53.2 194 714.8 1546.4 0.400 [14]
291 4500

97 Air Steel 554 19.4 714.8 1546.4 0.400 [14]
291 4500

98 Air Steel 58.5 19.4 714.8 1546.4 0.400 [14]
291 4500

99 Air Steel 59.5 19.4 714.8 1546.4 0.400 [14]
291 4500
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Table [ Continued

Case Fluid
phase

100 Atr
291

101 Arr
2.34

102 Air
241

103 EtOH
15.7

104 Air
234

105 Air
2.34

106 FtOH
293

107 Air
234

108 Water
50.9

109 Alr
2.34

110 Air
2.85

111 Air
2.38

12 EtOH
29.8

113 EtOH
298

114 Glycerin
45.4

115 Glycerin
45.4

116 Water
516

117 Water
51.6

118 Water
51.6

119 Water
345

120 Water
54.5

121 EtOH
29.33

122 Glycerin
46.3

123 Glycerin
46.3

124 Water
54.5

125 Air
243

126 Methane
30

127 Propane
1.6

128 CO;
1.35

129 Hydrogen
16.4

130 Air
2.34

131 Oil
154

132 Air

2.86

Solid
phase

Steed
4500
Cellite
92.0
Coal
36.0
Lead
3000
Steel
3850
Steel
3850
Copper
33163
Steel
3850
Lecad
3000
Steel
3850
Sand
187.6
Quartz
950.1
Copper
11500
Copper
11500
Copper
11500
Copper
11500
Copper
11500
Copper
11500
Copper
11500
Copper
33163
Copper
33163
Copper
33163
Copper
33163
Copper
33163
Copper
33163
Steel
3030
Steel
3300
Steel
3300
Steel
3300
Steel
3300
Steel
2850
Lead
2410
Sand
187.6

RoACrant and RO Vacion

Conductivity, tkedd mh K< 100

Lixperiment
611
234
10.2
126.0
435
ST

327.6

3270
44.6
263
KT

3180

3420

S80.0

595.0

5500

615.0

630.0

629.9

597.1

323

607.6

549.

e

634.4

Uniform

heat flux

19.4

8.2

198.4
16.0
193.5

15.6

Parallcl
sotherms

7148

27.5

139

643.3

608.0

608.0

5197.1

397.1

824.8

6144

50.4

181.7

22100

22100

2370.0

2370.0

24240

2424.0

2424.0

3950.6

5950.6

5950.6

5950.6

5499.4

5818.1

497.1

548.9

wh

16.5

509.8

708.4

468.7

5419

50.4

(hy ko
1546.4
393
14.9
191.1
1645.3
1645.3
1130.5
16453

589

2229
2229
2229
608.5
608.5
1130.5
71e.1
716.1
608.5
12469
1100.0
20625
24444

201.2

bt

0.400

0.400

0.400

0.397

0.394

0.394

0.392

0.391

0.391

0.390

0.390

0.390

0.388

0.388

0.38%

0.388

0.388

0.388

0.388

0.387

0.387

0.386

0.386

0.385

0.384

0.380

0.380

0.380

0.380

0.380

0.380

0.380

0.370

Ref.
[14]
[10]
[10]

[71

[6]

(6]

(o]
[10]
(6]
[14]
[9]

17]
17
17]
(7]

(7]
{7l
[7]
L7]

171

{1s)
[15]
[13)

[6]
[13]
(14]
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Table | - Continued

Conductivity, (kcal/mh K) x 100

Case Fluid Solid Uniform Parallel

phase phase Experiment heat flux isotherms (ka/k,) -2 Ref.

133 Air Steel 356 14.2 378.4 1000.0 0.365 [11]
225 2250

134 Hydrogen Steel 110.0 75.5 520.0 1355 0.365 [t1]
16.6 2250

135 Helium Glass 311 256 448 78 0.350 [12}
11.95 93.5

136 Air Glass 13.8 7.5 275 44.1 0.350 {123
2.12 93.5

137 Air Glass 13.8 6.61 194 283 0.349 [16]
20.8 59.1

138 Air Lead 342 14.5 492.6 1358.7 0.346 [17]
2.23 3030

139 Hydrogen SiC 954 64.1 377.2 104.0 0.328 [16]
14.9 1548.7

140 Air SiC 273 12.6 270.4 7428 0.328 [16]
2.08 1548.7

141 CO, SiC 26.2 8.2 254.6 12235 0.328 [16]
1.27 1548.7

142 Hydrogen SiC 61.7 64.1 377.2 104.0 0.325 [16]
14.9 1548.7

143 Air SiC 270 12.6 270.4 7429 0.325 [16]
2.08 1548.7

144 CO, SiC 25.2 8.2 2546 12235 0.325 [16]
1.27 1548.7

145 Air Quartz 49.0 134 178.1 398.7 0.310 [9]
2.38 950.1

146 Hydrogen SiC 110.8 62.5 386.4 104.0 0.308 [16]
14.9 1548.7

147 Air SiC 275 12.3 277.0 7429 0.308 [16]
2.08 1548.7

148 CO, SicC 26.4 797 260.7 12235 0.308 [16]
1.27 1548.7

149 Helium SiC 852 52.7 260.7 129.2 0.308 [1e]
12.0 1548.7

150 Air Lead 584 14.3 505.1 1346.7 0.310 [11]
2.25 3030

151 Air Quartz 70.0 12.2 183.5 420.0 0.276 [12]
2.25 945.0

152 Air Quartz 76.0 12.2 183.5 4200 0.241 [12]
2.25 945.0

153 Water S.S. 2725 1958 496.8 330 0.501 (7]
54.5 17959

154 Glycerin S.S. 248.7 172.9 475.5 388 0.502 [7]
46.3 1795.9

155 EtOH S.S. 172.7 120.7 4223 612 0.505 7
293 17959

156 Hydrogen (C¢Hs); NH 16.5 16.7 16.7 1.3 0.513 [12]
14.85 18.9

157 Air (CeHs), NH 6.9 5.1 7.5 9.1 0.513 [12]}
2.08 18.9

1358 Hydrogen SiC 46.0 68.3 322.1 1044 0.518 [12]
14.85 1550

159 CO, Basalt 0.1061 0.1280 x 107 10.53 5.75 x 10° 0.540 8]
0.1578 x 1077 90.7

160 CO, Basalt 0.08183 0.1760 x 10™¢ 9.0 4.89 x 10° 0.600 8]
0.1856 x 10°7  90.7

161 CO, Basalt 0.05598 0.1933 x t0~° 10.47 3.82 x 10° 0.654 (8]
02373 x 1077 90.7

162 CO,; Basalt 0.511 0.2747 x 10™° 8.90 3.16 x 10° 0.683 [8]
02967 x 1077 90.7

163 CO, Basalt 0.0414 0.181 x 10-° 19.15 223 x 10° 0.721 8]
04764 x 1077 90.7

164 CO, Basalt 0.1404 0.652 x 1076 19.15 6.19 x 10° 0.470 [12]
0.1464 x 1077 90.7

165 Air SiC 15.6 12.7 2189 745.2 0.518 [12]

2.08 1550
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Table | Continued
Conductivity, (kcal/mh K) x 100
Case Fluid Solid Uniform Parallel
phase phase Experiment heat flux isotherms (haike) 1~ Ref.
166 CO, Sic nss sl 2056 12302 0518 [12]
1.26 1550
167 Air Iron 399 13.2 584.0 2277.1 0.575 [9]
247 5628.9
168 Oil Copper 130.0 80.6 3365.0 2077.9 0.580 [13}
154 32000
169 Oil Steel 81.5 62.2 512.8 227.3 0.580 [10]
154 3500
170 Oil Glass 29.8 25.2 31.2 3.974 0.580 [10]
154 61.2
171 Oil Lead 60.0 58.7 381.7 156.5 0.580 [10]
154 2410
172 CO, Basalt 1.024 0.602 18.28 480.7 0.720 (8]
0.2013 96.8
1000 1000
100~
100 L—

Parallel Isotherms

Experimental Data

Effective Thermal Conductivity
Conductivity Of Continuous Phase

ke
Kc

Uniform Heat Fiux

1 |
1 10

Kc , Conductivity Of Continuous Phase

Kd Tonductivity Of Discontinuous Phase

F1G. 6. Comparison of bounding conductivities with experi-
mental data for a porosity of 0.43.

Thus the calculated equations are raised above the
lower bounding curve. Similarly for parallel isotherm
models an excessive amount of the higher conductivity
material can be placed in parallel with itself and in
series with the low conductivity phase. This distortion
tends to result in a lower calculated conductivity than
that of the upper bound.

The approach to be recommended here is to avoid
all distortions of the granular system geometry. Recog-
nizing that some error is introduced by the one dimen-
sional heat transfer assumptions a correction factor is
to be applied to one of the bounding equations. Such
a correction factor must at the present time be obtained
empirically. Selecting the upper bound equation an iso-

Parallel {sotherms
10

Experimental Data

Ka, Effective Thermal Conductivity
Kc Conductivity Of Continuous Phase

Uniform Heat Flux

1 |

1 10
Ke, Conductivity Of Continuous Phase
Kd  Conductivity Of Discontinuous Phase

100

FiG. 7. Comparison of bounding conductivities with experi-

mental data for a porosity of 0.58.

thermal distortion factor, F,., may be introduced
such that:

{19)

It is assumed that the isothermal distortion factor may
be expressed as a polynomial function of the constituent
conductivity ratio kq/k. and the solid fraction &. Using
data from Table 1 values of F,, have been correlated
using a least squares technique. The resulting corre-
lation was found to be:

InF, = —0.1439-0.72359 In(k4/k,)
+0.020114[ In(ky/k.)]* +3.0260z.  (20)
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o
=Y

—
=]

Calculated Effective Conductivity
Continuous Phase Conductivity

1 10 100
Experimental Effective Conductivity
Continuous Phase Conductivity

F1G. 8. Comparison of experimental and calculated results.

8

Caiculated effective conductivity
continuous phase conductivity
)

I 10 100

Experimental effective conductivity
continuous phase conductivity

F1G. 9. Comparison of experimental results with calculated
conductivity for the Schumann and Voss equation.

A comparison between predicted and calculated data
from Table 1 is shown in Fig. 8. It should be noted
that the correlation will fit virtually all of the data
points within + 30%;. The average error is calculated to
be 21Y%. This range of accuracy appears quite good in
consideration of the variety of sources from which data
was selected and the wide range of particle sizes and
shapes included. Moreover it was necessary to assume
certain constituent conductivities in that their exact
composition was not always given by researchers.
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F1G. 10. Comparison of experimental results with calculated
conductivity for the Meredith and Tobias equation.

8
T
N\,

Calculated effective conductivity
continuous phase conductivity

o
|

+

+

\,

\,

- L

| 10 100

Experimental effective conductivity
continuous phase conductivity

F1G. 11. Comparison of experimental results with calculated
conductivity for the Bruggeman equation.

For comparative purposes four well known corre-
lations developed by Schumann and Voss |11},
Meredith and Tobias [18}, Bruggeman [19] and Lord
Rayleigh [20] have been evaluated. Calculational
results are illustrated in Figs. 9-12 respectively. The
average error for these correlations is calculated to be
249, 31.6, 26.9 and 33.3%, respectively. The new corre-
lation is seen to reduce this average error significantly.
The authors attribute this improvement to the assumed
geometrical form.
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F1G. 12. Comparison of experimental results with calculated
conductivity for the Lord Rayleigh equation.

In conclusion, two bounding equations to the effect-
ive thermal conductivity of granular materials have
been developed. These equations indicate a limit to the
usefulness of one dimensional models and hence to the
Ohm’s Law approach in evaluating such systems with-
out empirical correlation. The model which has been
proposed for evaluating the thermal conductivity of
granular systems offers the unique advantage of being
based on a geometrically realistic geometry. While
distortion of the heat flux lines and isotherms can not
yet be adequately handled by analytical development
they are considered by means of an empirical curve
fit. Thus both of the major factors affecting errors in
simplified models have been avoided in this develop-
ment.
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ESTIMATION DES LIAISONS POUR LE CALCUL DE LA CONDUCTIVITE
THERMIQUE EFFECTIVE DES MATERIAUX GRANULEUX

Résume - Pour décrire la conductivité thermique effective de systémes de grains agglomérés au hasard,

on développe deux modeles basés sur la méthode de la loi d’'Ohm monodimensionnelle. Ces modéles

représentent les liaisons supérieures et inférieures pour tous les mélanges stochastiques normalement

distribués. On obtient un facteur empirique pour tenir compte des effets thermiques tridimensionnels.

Des comparaisons avec les résultats expérimentaux indiquent que la corrélation modifiée est généralement
correcte a £ 20%, pour une large gamme de matériaux constitutifs.

BESTIMMUNG DER GRENZWERTE DER EFFEKTIVEN WARMELEITFAHIGKEIT
GRANULIERTER MATERIALIEN

Zusammenfassung —Zur Beschreibung der effektiven Wirmeleitfihigkeit von Granulatsystemen willkiir-

licher Packung werden zwei auf dem eindimensionalen Ohmschen Gesetz basierende Modelle entwickelt.

Diese Modelle geben die obere und untere Grenze der effektiven Wiarmeleitfahigkeit fiir eine normal

verteilte stochastische Mischung wieder. Mit Hilfe eines empirischen Faktors werden dreidimensionale

Wirmeleiteffekte erfaBit. Ein Vergleich mit MeBwerten zeigt, daB die modifizierte Beziehung fiir eine
Vielzah!l von Materialien uauf +20% genau stimmt.
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PACYET I'PAHUL] D®SEKTUBHON VIEJLHON TEILJIOIIPOBOJAHOCTH
3EPHHCTBIX MATEPHAJIOB

Ammoramua — Pa3pa6oTaHbl e MOAETH A onucanus 3(pGdeKTHBHOM yIeNnbHOR TENNONPOBOTHOCTH

HUCTIEPCHBIX CHUCTEM C OecropsOoOvYHON YKIaJkod 4yacTUl Ha OCHOBAHHH OIHOMEDHOIO METOa

3akoHa OMa. TToka3aHo, KaK 3TH MOJIENIH ONPElE/IsiOT BEPXHIOK H HIKHIOK I'DaHHLE 3 ek THBHOMK

yIOEIbHOH TEIIONMPOBOOHOCTH BCEX CTOXACTHYECKHX CMecelt C HOPMANBHEIM Pacrpene/CHAEM.

Tlony4en sMmapruecKuii kK03GOUUMERT OIS yYeTa TPEXMEPHBIX TEIUIOBRIX 3¢dekToB. CpaBHEHHE C

JKCOEPUMEHTAILHBIME JaHHBIMH MOKA3bIBAET, YTO MOIUPHIHMPOBAHHAS KOPPEIALHS HMEET TOYHOCTD
oxoto -£20Y%, O MHPOKOro AAana3oHa KOMIOHEHTOB CMeECH.



